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Ramsey Theory

The Ramsey Number R(G, H) is the smallest n for which any
2-edge-colouring of K|, contains either a red G or a blue H.

Theorem (Ramsey, 1930)

R(K,, K,) is finite for every n.

The following bounds hold
V2" < R(Ky, Ky) < 4.

Theorem (Gerencsér and Gyarfés, 1966)

For m < n we have that

R(P,, Pn) = n+ EJ ~1
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168 L. GERENCSER AND A. GYARFAS

ON RAMSEY-TYPE PROBLEMS 169

THEOREM 1. For k = [ we have
m B0k D) = k4 ’L‘]

Considering the other special case of this type of problems, let /() denote
the greatest integer with the property, that colouring the edges of a complete
n-tuple g with r colours arbitrarily, there exists always a one-coloured connected
subgraph with at least f,(n) vertices.

Itis easy to see the following remark of P. Ern0s: if a graph is not connected
then its complement is connected, i.e. [y(n) = n. We shall prove

TueoREM 2.
: ntl
® o =[]
Now we turn to the proof of Theorem 1. First we prove g(k, I)=k+ IHTI]

by induction on k. For k=1 the Theorem evidently holds and let us suppose
that for all k-s less than this the statement is true, Let us consider a graph G
with &+ [0 ] vertices. 1£ 1<, then for any subgraph of G with k— Hzl

points holds that either itself contains a path of length k— 1, or its complement
a path of length I. For I=k we consider a subgraph with k—1+ ?‘ points.

This or its complement contains a path of length k— 1. Thus In every easecan

be supposed, that the length of the longest pathof Gisk— 1. g3+ 00y U

be the consecutive vertices of such a path and U = {Uy, . u .} We denote

the remaining vertices by V,, ..., v{,;,] and the set of them by V =
T

v 3
el

It clearly holds that

(i) for all V, € V either V.U € Gor VU, € G

(if) for all V, € V V,U, € G and V.U, € G

(i) for Viy, Vo, Vae Vand U, Uy € U
at least one of the latést points is connected in G with at least two of Vi, Vig, Vg

Consider a maximal path of G not containing Uy, Uy with the property
that any edge of it connects a point of U with a point of V, and its endpoints-
are in V; let us denote the endpoints by A and B, and the path by S. If S con
tains all points of V, then by adding the edges U, A, BU, we have a path of

length 2 % =1 in G. So we may suppose that the set of points V not con-

tained by S is not empty. Let this set be called W. Consider a maximal path
g of G not containing Uy, Uy and having no common points with S, such that
an)’ edge of it connects a point of U with a point of W and the endpoints of it,
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called by C and D, are in W. We show that all points of V are contained either
in S oring. Suppose that X ¢ V but X ¢ 8, X ¢ . It is clear, that the number
of vertices of S and q in U is at most [';' ] g, "%3 a ‘# since
1 = k. So there exist two points U, Uy € {Us, ..., Uy} Which do not belong
cither to S or to ¢. Applying (iii) for A, C, X € V and Uy, U, € U we have
a contradiction to the maximal properties of S and g.

So the sum of the length of S and g is 2 [’* L ]_4. We add them the edges

U,A, BU,, U,C, DU, and so we have a circuit of length 2 '12_' in G. For

odd I this contains a desired path with length [. For even [ an easy reasoning
shows that there are Uy, U,4y € U which do not belong to this circuit. Hence
one of them is connected with a vertex of the circuit (see (i)) and so we have
again a path with length I in G. That completes the proof.

Now we give examples for graphs G with k + ':2—]] — 1 points that have

no path of length &, and for them at the same time G have no path of length i.
a) Let G consist of the disjoint graphs Hy, H, with k and[¥]~ 1 points

respectively, where the graph H, is complete.

b) For even [ we can leave one of the edges of H,. These graphs possess
obviously the desired property.t

Now we turn to the proof of Theorem 2. We consider a classification of the
edges of a complete graph G into three classes, i.e. let the edges of G be coloured
with red, yellow and blue colours. So we get the graphs G, G, and Gy formed
by the red. vellow and blue edges respectively. We say that a subgraph is for
example red-conneeted if it i a connected subgraph of G,. Let us take a maximal
red-connected subgraph R. It may be supposed that R is not empty and =(R) =
< a(G) = n. Let B bea point of G such that B ¢ R. Since R is a maximal con-
nected subgraph of i, BR, is not red for R, ¢ R. So one may suppose that

1
there are at least — =,R) points of R which are connected with B by blue edges.

Let V denote the set of these points of R and W be the maximal blue-connected
subgraph that contains B. If V' is a point such that ¥ ¢ R and ¥ ¢ W then
YV, is yellow for V; ¢ V. Let Q denote the maximal yellow-connected sub-
graph that contains Y. If there is no such Y, Q denotes the empty set. R, W, Q
contain together all points of G. Namely any points S ¢ R is connected with a

1 The weaker result glk, [) = k+1 can be casily proved. Let - consider any vertex
P and a pair of paths of G and @ without common vertices except P. It can be proved that a
peir of paths with maximal sum of engths contaias all ponts. hasimaaity with respect 1031
F'and 2 pairs.) From that the statement fallows
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! The weaker result g(k, ) = k+! can be easily proved'. Let us consider any vertex
P and a pair of paths of G and G without common vertices except P. It can be proved that a
pair of paths with maximal sum of lengths contains all points. (Maximality with respect to all
P and all pairs.) From that the statement follows.

1 The weaker result gk, I) = k+1 can be easily proved. Let us consider any vertex
P and a pair of paths of G and G without common vertices except P. It can be proved tha
i of pathsawith maiga su of lengths contains all poins. (Maximalicy with respect to.ll
P and all pairs.) From that the statement follows
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Partitioning coloured graphs

Theorem (Gerencsér and Gyarfas, 1966)

Every 2-edge-coloured complete graph can be covered by 2 disjoint
monochromatic paths with different colours.

Conjecture (Lehel, 1979)

Every 2-edge-coloured complete graph can be covered by 2 disjoint
monochromatic cycles with different colours.

Single edge or single vertex count as cycles.

Conjecture (Erdés, Gyarfas, and Pyber, 1991)

Every r-edge-coloured complete graph can be covered by r disjoint
monochromatic cycles.
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Results for arbitrarily many colours

Theorem (Erdés, Gyarfas, Pyber, 1991)

There exists a function f(r) such that any r-edge-coloured K, can be
covered by f(r) disjoint monochromatic cycles.

@ Erdos, Gyarfas and Pyber proved this theorem with
f(r) = 0O(r?logr).

o Gyarfas, Ruszinkd, Sarkozy and Szemerédi improved the bound
to f(r) = O(rlogr).

@ Major open problem to show f(r) < Cr for some C.
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Two colours

Suppose that the edges of K|, are coloured with 2 colours...
@ There exists a covering with 2 disjoint monochromatic paths.
[Gerencsér, Gyarfas, 1967]

@ There exists a covering of K,, by 2 monochromatic cycles,
intersecting in at most one vertex. [Gyarfas, 1983]

o If nis very large, there exists a covering by 2 disjoint
monochromatic cycles. [Luczak, Rodl, Szemerédi, 1998]

o If nis large, there exists a covering of K,, by 2 disjoint
monochromatic cycles. [Allen, 2008]

@ There exists a covering of K,, by 2 disjoint monochromatic
cycles. [Bessy, Thomassé, 2010]
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Three colours

Theorem (Gyarfas, Ruszinkd, Sarkozy, Szemerédi, 2011)

Every 3-edge-coloured K, contains 3 disjoint monochromatic cycles
covering n — o(n) vertices.

Theorem (P., 2013+)

For every r > 3, and n > N, there exists an r-edge-coloured of K,
which cannot be covered by r disjoint monochromatic cycles.

Theorem (P., 2013+)

There is a constant ¢ such that every 3-edge-coloured K, contains 3
disjoint monochromatic cycles covering n — c vertices.
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Counterexamples

A 3-edge-coloured K47 which cannot be covered by 3 disjoint

monochromatic cycles.
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Covering a 3-coloured complete graph by 3 cycles
Theorem (P., 2013+)

There is a constant ¢ such that every 3-edge-coloured K, contains 3
disjoint monochromatic cycles covering n — ¢ vertices.

Proof is based on two lemmas.

Lemma

Let K, be a 2-edge-coloured complete graph such that the red colour
class is k-connected. Then K, can be covered by a red cycle and a
blue graph H satisfying

k
> — — 4.
(H) = 1 1Ml 4

Lemma

There exist constants e > 0 and c such that every 2-edge-coloured

graph G with minimum degree 1 — €)|G| contains two disjoint
Alexey Pokrovskiy (Freie) Covering Coloured Graphs by Cycles October 24, 2013 14 / 18




Partitioning a graph into a cycle and a sparse graph

Lemma

Let K, be a 2-edge-coloured complete graph such that the red colour
class is k-connected. Then K, can be covered by a red cycle and a
blue graph H satisfying

d(H) >

H| — 4.
—k+1| |

@ The constant k+1” is best possible.

@ The constant “—4" is not.

Lemma

Every 2-edge-coloured K,, can be covered by red cycle and a blue
graph H satisfying

1 1
> Z|H| - =.
5(H) > 51H| ~ 5

| DR

- i 1 . PR
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Open problems

Conjecture (Gydarfas)
Every r-edge-coloured complete graph can be covered by r disjoint
monochromatic paths.

True for r = 2 and 3.

Conjecture

For each r there exists a constant c, such that every r-edge-coloured
complete graph K, contains r disjoint monochromatic cycles on
n — ¢, vertices.

Conjecture

Every r-edge-coloured complete graph can be covered by r (not
necessarily disjoint) monochromatic cycles.

4
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Open problems

Conjecture (Gyarfas)
Let G be a 2-edge-coloured graph with minimum degree §.

(i) 6 >3 = G can be covered by 2 disjoint monochromatic
cycles.

(i) 6 > 2 = G can be covered by 3 disjoint monochromatic
cycles.

(i) 6 > 2 = G can be covered by 4 disjoint monochromatic
cycles.

Part (i) was conjectured separately by Balogh, Barat, Gerbner,
Gyarfas & Sarkozy.
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Open problems

Lemma

Every 2-edge-coloured K,, can be covered by red cycle and a blue
graph H satisfying
1

1
> Z|H| - =.
§(H) =2 5|H| - 5

Problem

Prove natural statements of the form “Every 2-edge-coloured
complete graph can be covered by a red graph G and a disjoint blue
graph H with G and H having particular structures”.

Known results of this type:
@ G and H paths (Gerencsér and Gyarfas).
e G and H cycles (Luczak, R&dl, and Szemerédi; Allen; Bessy and
Thomassé).
e G a matching, H a complete graph (folklore).

. . '
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