Nonnegative k-sums in a set of numbers

Alexey Pokrovskiy

Methods for Discrete Structures,
Freie Universität Berlin, Berlin.
alja123@gmail.com

8th July, 2014
Nonnegative sums

\{5, 3, -6, -1\}. Nonnegative sums:
\{5, 3, -6\}, \{5, 3, -1\}, \{5, 3\}, \{5, -1\}, \{3, -1\}, \{5\}, \{3\}.

Problem

Let \(x_1, \ldots, x_n\) be a set of numbers satisfying \(x_1 + x_2 + \cdots + x_n \geq 0\).
How few subsets can have nonnegative sum?
Nonnegative sums

\{5, 3, -6, -1\}. Nonnegative sums:
\{5, 3, -6\}, \{5, 3, -1\}, \{5, 3\}, \{5, -1\}, \{3, -1\}, \{5\}, \{3\}.

Problem

Let \(x_1, \ldots, x_n\) be a set of numbers satisfying \(x_1 + x_2 + \cdots + x_n \geq 0\).
How few subsets can have nonnegative sum?

- Choosing \(x_1 = n\), and \(x_2 = x_3 = \cdots = \ldots x_n = -1\) shows that the answer is at most \(2^{n-1}\).
Nonnegative sums

\{5, 3, -6, -1\}. Nonnegative sums:
\{5, 3, -6\}, \{5, 3, -1\}, \{5, 3\}, \{5, -1\}, \{3, -1\}, \{5\}, \{3\}.

Problem

Let \(x_1, \ldots, x_n\) be a set of numbers satisfying \(x_1 + x_2 + \cdots + x_n \geq 0\).

How few subsets can have nonnegative sum?

- Choosing \(x_1 = n\), and \(x_2 = x_3 = \cdots = \ldots x_n = -1\) shows that the answer is at most \(2^{n-1}\).
- Since for any \(A \subseteq \{x_1, \ldots, x_n\}\), either \(A\) or \(\overline{A}\) has nonnegative sum, the answer is \(2^{n-1}\).
Nonnegative sums

\{5, 3, -6, -1\}. Nonnegative sums:
\{5, 3, -6\}, \{5, 3, -1\}, \{5, 3\}, \{5, -1\}, \{3, -1\}, \{5\}, \{3\}.

Problem

Let \(x_1, \ldots, x_n\) be a set of numbers satisfying \(x_1 + x_2 + \cdots + x_n \geq 0\). How few subsets can have nonnegative sum?

- Choosing \(x_1 = n\), and \(x_2 = x_3 = \cdots = \ldots x_n = -1\) shows that the answer is at most \(2^{n-1}\).
- Since for any \(A \subseteq \{x_1, \ldots, x_n\}\), either \(A\) or \(\overline{A}\) has nonnegative sum, the answer is \(2^{n-1}\).

Problem

Let \(x_1, \ldots, x_n\) be a set of numbers satisfying \(x_1 + x_2 + \cdots + x_n \geq 0\). How few subsets of order \(k\) can have nonnegative sum?
Conjecture (Manickam, Miklós, Singhi)

Let $n \geq 4k$ and x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \geq 0$. At least $\binom{n-1}{k-1}$ subsets of order k have nonnegative sum.
Nonnegative sums

Conjecture (Manickam, Miklós, Singhi)

Let \(n \geq 4k \) and \(x_1, \ldots, x_n \) be a set of numbers satisfying \(x_1 + x_2 + \cdots + x_n \geq 0 \). At least \(\binom{n-1}{k-1} \) subsets of order \(k \) have nonnegative sum.

The bound is seen to be best possible by again choosing \(x_1 = n \), and \(x_2 = x_3 = \cdots = \ldots x_n = -1 \).
Conjecture (Manickam, Miklós, Singhi)

Let $n \geq 4k$ and x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \geq 0$. At least $\binom{n-1}{k-1}$ subsets of order k have nonnegative sum.

- The bound is seen to be best possible by again choosing $x_1 = n$, and $x_2 = x_3 = \cdots = x_n = -1$.
- “$n \geq 4k$” is motivated by a construction at $n = 3k + 1$ ($x_1 = x_2 = x_3 = 2 - 3k$ and $x_4 = \cdots = x_{3k+1} = 3$).
Known results

Conjecture (Manickam, Miklós, Singhi)

Let \(n \geq 4k \) and \(x_1, \ldots, x_n \) be a set of numbers satisfying \(x_1 + x_2 + \cdots + x_n \geq 0 \). At least \(\binom{n-1}{k-1} \) subsets of order \(k \) have nonnegative sum.
Known results

Conjecture (Manickam, Miklós, Singhi)

Let \(n \geq 4k \) and \(x_1, \ldots, x_n \) be a set of numbers satisfying \(x_1 + x_2 + \cdots + x_n \geq 0 \). At least \(\binom{n-1}{k-1} \) subsets of order \(k \) have nonnegative sum.

- True when \(n \equiv 0 \pmod{k} \). (Manickam and Singhi)
Known results

Conjecture (Manickam, Miklós, Singhi)

Let \(n \geq 4k \) and \(x_1, \ldots, x_n \) be a set of numbers satisfying
\[
x_1 + x_2 + \cdots + x_n \geq 0.
\]
At least \(\binom{n-1}{k-1} \) subsets of order \(k \) have nonnegative sum.

- True when \(n \equiv 0 \pmod{k} \). (Manickam and Singhi)
- True when \(n \) is large compared to \(k \):
 - \(n \geq k (4e \log k) k \) (Tyomkyn).
 - \(n \geq 33k^2 \) or \(n \geq 2k^3 \) (Alon, Huang, and Sudakov).
 - \(n \geq 2k^3 \) (Aydinian and Blinovsky).
 - \(n \geq 3k^3/2 \) (Frankl).
 - \(n \geq 8k^2 \) (Chowdhury, Sarkis, Shahriari).
 - \(n \geq 10^{46} k \) (P.).
Known results

Conjecture (Manickam, Miklós, Singhi)

Let \(n \geq 4k \) and \(x_1, \ldots, x_n \) be a set of numbers satisfying \(x_1 + x_2 + \cdots + x_n \geq 0 \). At least \(\binom{n-1}{k-1} \) subsets of order \(k \) have nonnegative sum.

- True when \(n \equiv 0 \pmod{k} \). (Manickam and Singhi)
- True when \(n \) is large compared to \(k \):
 - \(n \geq (k - 1)(k^k + k^2) + k \) (Manickam and Miklós).
Known results

Conjecture (Manickam, Miklós, Singhi)

Let $n \geq 4k$ and x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \geq 0$. At least $\binom{n-1}{k-1}$ subsets of order k have nonnegative sum.

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when n is large compared to k:
 - $n \geq (k - 1)(k^k + k^2) + k$ (Manickam and Miklós).
 - $n \geq k(4e \log k)^k$ (Tyomkyn).
Known results

Conjecture (Manickam, Miklós, Singhi)

Let $n \geq 4k$ and x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \geq 0$. At least $\binom{n-1}{k-1}$ subsets of order k have nonnegative sum.

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when n is large compared to k:
 - $n \geq (k - 1)(k^k + k^2) + k$ (Manickam and Miklós).
 - $n \geq k(4e \log k)^k$ (Tyomkyn).
 - $n \geq 33k^2$ or $n \geq 2k^3$ (Alon, Huang, and Sudakov).
Known results

Conjecture (Manickam, Miklós, Singhi)

Let $n \geq 4k$ and x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \geq 0$. At least $\binom{n-1}{k-1}$ subsets of order k have nonnegative sum.

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when n is large compared to k:
 - $n \geq (k - 1)(k^k + k^2) + k$ (Manickam and Miklós).
 - $n \geq k(4e \log k)^k$ (Tyomkyn).
 - $n \geq 33k^2$ or $n \geq 2k^3$ (Alon, Huang, and Sudakov).
 - $n \geq 2k^3$ (Aydinian and Blinovskiy).
Known results

Conjecture (Manickam, Miklós, Singhi)

Let $n \geq 4k$ and x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \geq 0$. At least $\binom{n-1}{k-1}$ subsets of order k have nonnegative sum.

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when n is large compared to k:
 - $n \geq (k - 1)(k^k + k^2) + k$ (Manickam and Miklós).
 - $n \geq k(4e \log k)^k$ (Tyomkyn).
 - $n \geq 33k^2$ or $n \geq 2k^3$ (Alon, Huang, and Sudakov).
 - $n \geq 2k^3$ (Aydinian and Blinovskiy).
 - $n \geq 3k^3/2$ (Frankl).
Conjecture (Manickam, Miklós, Singhi)

Let $n \geq 4k$ and x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \geq 0$. At least $\binom{n-1}{k-1}$ subsets of order k have nonnegative sum.

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when n is large compared to k:
 - $n \geq (k - 1)(k^k + k^2) + k$ (Manickam and Miklós).
 - $n \geq k(4e \log k)^k$ (Tyomkyn).
 - $n \geq 33k^2$ or $n \geq 2k^3$ (Alon, Huang, and Sudakov).
 - $n \geq 2k^3$ (Aydinian and Blinovskiy).
 - $n \geq 3k^3/2$ (Frankl).
 - $n \geq 8k^2$ (Chowdhury, Sarkis, Shahriari).
Known results

Conjecture (Manickam, Miklós, Singhi)

Let $n \geq 4k$ and x_1, \ldots, x_n be a set of numbers satisfying $x_1 + x_2 + \cdots + x_n \geq 0$. At least $\binom{n-1}{k-1}$ subsets of order k have nonnegative sum.

- True when $n \equiv 0 \pmod{k}$. (Manickam and Singhi)
- True when n is large compared to k:
 - $n \geq (k - 1)(k^k + k^2) + k$ (Manickam and Miklós).
 - $n \geq k(4e \log k)^k$ (Tyomkyn).
 - $n \geq 33k^2$ or $n \geq 2k^3$ (Alon, Huang, and Sudakov).
 - $n \geq 2k^3$ (Aydinian and Blinovskiy).
 - $n \geq 3k^3/2$ (Frankl).
 - $n \geq 8k^2$ (Chowdhury, Sarkis, Shahriari).
 - $n \geq 10^{46}k$ (P.)
Katona’s cycle method

How to prove MMS conjecture:

We have set $\{x_1, \ldots, x_k\}$ with $x_1 + \cdots + x_k \geq 0$.

Choose a random cyclic ordering of x_1, \ldots, x_n.

Count $E = E(\text{number of nonnegative } k\text{-intervals})$ in two different ways.

$E = (\text{number of nonnegative } k\text{-sets})$

$P(k\text{-set forms an interval}) = (\text{number of nonnegative } k\text{-sets})$

$k \choose n - k \frac{n!}{n! n!}.$

Lemma (easy)

Any nonnegative weighting of \mathbb{Z}_n has at least k nonnegative k-intervals.

Therefore $E \geq k$ and so $\text{number of nonnegative } k\text{-sets} \geq \binom{n - 1}{k - 1}$.
Katona’s cycle method

How to prove MMS conjecture:

- We have set \(\{x_1, \ldots, x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
Katona’s cycle method

How to prove MMS conjecture:

- We have set \(\{x_1, \ldots, x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
- Choose a random cyclic ordering of \(x_1, \ldots, x_n \).
Katona’s cycle method

How to prove MMS conjecture:

- We have set \(\{x_1, \ldots x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
- Choose a random cyclic ordering of \(x_1, \ldots, x_n \).
- Count \(E = \mathbb{E}(\text{number of nonnegative k-intervals}) \) in two different ways.

\[E = (\text{number of nonneg. k-sets}) \]
\[= (\text{number of nonneg. k-sets}) \]
\[= k! \left(\frac{n - k}{n} \right)! \]

Lemma (easy)

Any nonneg. weighting of \(\mathbb{Z}_n \), has at least \(k \) nonneg. k-intervals

Therefore \((\text{number of nonneg. k-sets}) \geq k \) and so

\[\text{number of nonneg. k-sets} \geq \binom{n - 1}{k - 1} \]
Katona’s cycle method

How to prove MMS conjecture:

- We have set \(\{x_1, \ldots x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
- Choose a random cyclic ordering of \(x_1, \ldots, x_n \).
- Count \(E = \mathbb{E}(\text{number of nonnegative } k\text{-intervals}) \) in two different ways.

\[
E = (\text{number of nonneg. } k\text{-sets}) \mathbb{P}(\text{k-set forms an interval})
\]

\[
= (\text{number of nonneg. } k\text{-sets}) \frac{k!(n-k)!}{n!} n
\]
Katona’s cycle method

How to prove MMS conjecture:

- We have set \(\{x_1, \ldots, x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
- Choose a random cyclic ordering of \(x_1, \ldots, x_n \).
- Count \(E = \mathbb{E}(\text{number of nonnegative } k\text{-intervals}) \) in two different ways.

\[
E = (\text{number of nonneg. } k\text{-sets}) \mathbb{P}(\text{k-set forms an interval})
\]
\[
= (\text{number of nonneg. } k\text{-sets}) \frac{k!(n-k)!}{n!}
\]

Lemma (easy)

Any nonneg. weighting of \(\mathbb{Z}_n \), has at least \(k \) nonneg. \(k \)-intervals
Katona’s cycle method

How to prove MMS conjecture:

- We have set \(\{x_1, \ldots, x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
- Choose a random cyclic ordering of \(x_1, \ldots, x_n \).
- Count \(E = \mathbb{E}(\text{number of nonnegative } k\text{-intervals}) \) in two different ways.

\[
E = (\text{number of nonneg. } k\text{-sets}) \mathbb{P}(k\text{-set forms an interval})
\]

\[
= (\text{number of nonneg. } k\text{-sets}) \frac{k!(n-k)!}{n!} \frac{1}{n}
\]

Lemma (easy)

Any nonneg. weighting of \(\mathbb{Z}_n \), has at least \(k \) nonneg. \(k \)-intervals

- Therefore (number of nonneg. \(k \)-sets) \(\frac{k!(n-k)!}{n!} n \geq k \) and so

\[
\text{number of nonneg. } k\text{-sets} \geq \binom{n-1}{k-1}.
\]
Katona’s cycle method

How to prove MMS conjecture:

- We have set \(\{x_1, \ldots, x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
- Choose a random cyclic ordering of \(x_1, \ldots, x_n \).
- Count \(E = \mathbb{E}(\text{number of nonnegative } k\text{-intervals}) \) in two different ways.

\[
E = (\text{number of nonneg. } k\text{-sets}) \mathbb{P}(k\text{-set forms an interval}) \\
= (\text{number of nonneg. } k\text{-sets}) \frac{k!(n-k)!}{n!} n
\]

Lemma (easy)

Any nonneg. weighting of \(\mathbb{Z}_n \), has at least \(k \) nonneg. \(k\)-intervals

- Therefore \((\text{number of nonneg. } k\text{-sets}) \frac{k!(n-k)!}{n!} n \geq k \) and so

\[
\text{number of nonneg. } k\text{-sets} \geq \binom{n-1}{k-1}.
\]
Katona’s cycle method

How to prove MMS conjecture:

- We have set \(\{x_1, \ldots, x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
- Choose a random cyclic ordering of \(x_1, \ldots, x_n \).
- Count \(E = \mathbb{E}(\text{number of nonnegative k-intervals}) \) in two different ways.

\[
E = (\text{number of nonneg. k-sets}) \cdot \mathbb{P}(\text{k-set forms an interval})
\]

\[
= (\text{number of nonneg. k-sets}) \cdot \frac{k!(n-k)!}{n!} \cdot \frac{1}{n}
\]

Lemma (mostly false)

Any nonneg. weighting of \(\mathbb{Z}_n \), has at least \(k \) nonneg. k-intervals

- Therefore \((\text{number of nonneg. k-sets}) \cdot \frac{k!(n-k)!}{n!} \cdot \frac{1}{n} \cdot n \geq k \) and so

\[
\text{number of nonneg. k-sets} \geq \binom{n-1}{k-1}.
\]
Why is the easy lemma is false?

$k = 3$, $n = 16$. Here is a weighting of the cycle with only one nonnegative interval:

![Diagram of a cycle with weights and a highlighted nonnegative interval.]
Katona’s cycle method

How to prove MMS conjecture when $n \equiv 0 \pmod{k}$

We have set $\{x_1, ..., x_k\}$ with $x_1 + \cdots + x_k \geq 0$.

Choose a random ordering of $x_1, ..., x_n$.

Count $E = E(\text{number of nonnegative intervals of the form} \{t_k, \ldots, t_k + k - 1\})$ in two different ways.

$E = (\text{number of nonnegative } k\text{-sets}) P(k\text{-set forms an interval})$

$= (\text{number of nonnegative } k\text{-sets}) \frac{k!}{(n-k)!n!}$

Lemma (really easy)
For any nonnegative weighting of \mathbb{Z}_n, there is at least 1 nonnegative k-interval of the above form.

Therefore $\text{number of nonnegative } k\text{-sets} \geq \left(\frac{n-k}{k-1}\right)$.
Katona’s cycle method

How to prove MMS conjecture when $n \equiv 0 \pmod{k}$

- We have set $\{x_1, \ldots, x_k\}$ with $x_1 + \cdots + x_k \geq 0$.
- Choose a random ordering of x_1, \ldots, x_n.

\[
\text{Count } E = E(\text{number of nonnegative intervals of the form } \{t_k, \ldots, t_k+k-1\}) \text{ in two different ways.}
\]

\[
E = (\text{number of nonneg. } k\text{-sets}) \cdot P(k\text{-set forms an interval}) = (\text{number of nonneg. } k\text{-sets}) \cdot \frac{k!}{(n-k)! n! n^k}
\]

Lemma (really easy)

For any nonnegative weighting of \mathbb{Z}_n, there is at least 1 nonnegative k-interval of the above form.

Therefore $(\text{number of nonneg. } k\text{-sets}) \cdot \frac{k!}{(n-k)! n! n^k} \geq 1$ and so $(\text{number of nonneg. } k\text{-sets}) \geq \left(\frac{n-k}{n-1}\right)$.

Alexey Pokrovskiy (FU Berlin)
Katona’s cycle method

How to prove MMS conjecture when $n \equiv 0 \pmod{k}$

- We have set $\{x_1, \ldots, x_k\}$ with $x_1 + \cdots + x_k \geq 0$.
- Choose a random ordering of x_1, \ldots, x_n.
- Count $E = \mathbb{E}(\text{number of nonnegative intervals of the form } \{tk, \ldots, tk + k - 1\})$ in two different ways.
Katona’s cycle method

How to prove MMS conjecture when \(n \equiv 0 \pmod{k} \)

- We have set \(\{x_1, \ldots, x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
- Choose a random ordering of \(x_1, \ldots, x_n \).
- Count \(E = \mathbb{E}(\text{number of nonnegative intervals of the form } \{tk, \ldots, tk+k-1\}) \) in two different ways.

\[
E = (\text{number of nonneg. k-sets}) \mathbb{P}(\text{k-set forms an interval})
\]

\[
= (\text{number of nonneg. k-sets}) \frac{k!(n-k)!}{n!} \frac{n}{k}
\]
Katona’s cycle method

How to prove MMS conjecture when \(n \equiv 0 \pmod{k} \)

- We have set \(\{x_1, \ldots, x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
- Choose a random ordering of \(x_1, \ldots, x_n \).
- Count \(E = \mathbb{E}(\text{number of nonnegative intervals of the form} \{tk, \ldots, tk + k - 1\}) \) in two different ways.

\[
E = (\text{number of nonneg. k-sets}) \mathbb{P}(\text{k-set forms an interval}) \\
= (\text{number of nonneg. k-sets}) \frac{k!(n-k)!}{n!} \frac{n}{k}
\]

Lemma (really easy)

For any nonnegative weighting of \(\mathbb{Z}_n \), there is at least 1 nonnegative \(k \)-intervals of the above form.
Katona’s cycle method

How to prove MMS conjecture when \(n \equiv 0 \pmod{k} \)

- We have set \(\{x_1, \ldots, x_k\} \) with \(x_1 + \cdots + x_k \geq 0 \).
- Choose a random ordering of \(x_1, \ldots, x_n \).
- Count \(E = \mathbb{E}(\text{number of nonnegative intervals of the form } \{tk, \ldots, tk + k - 1\}) \) in two different ways.

\[
E = (\text{number of nonneg. } k\text{-sets}) \mathbb{P}(k\text{-set forms an interval})
\]

\[
= (\text{number of nonneg. } k\text{-sets}) \frac{k!(n-k)!}{n!} \frac{n}{k}
\]

Lemma (really easy)

For any nonnegative weighting of \(\mathbb{Z}_n \), there is at least 1 nonnegative k-intervals of the above form.

- Therefore \((\text{number of nonneg. } k\text{-sets}) \frac{k!(n-k)!}{n!} \frac{n}{k} \geq 1 \) and so

\[
\text{number of nonneg. } k\text{-sets} \geq \binom{n-1}{k-1}.
\]
A k-uniform hypergraph \mathcal{H} has the **MMS property** if for any weighting of $V(\mathcal{H})$, $w : V(\mathcal{H}) \to \mathbb{R}$, satisfying $\sum_{v \in \mathcal{H}} w(v) \geq 0$, there are at least $\delta(\mathcal{H})$ nonnegative edges in \mathcal{H}.
MMS property

Definition

A k-uniform hypergraph \mathcal{H} has the **MMS property** if for any weighting of $V(\mathcal{H})$, $w : V(\mathcal{H}) \to \mathbb{R}$, satisfying $\sum_{v \in \mathcal{H}} w(v) \geq 0$, there are at least $\delta(\mathcal{H})$ nonnegative edges in \mathcal{H}.

The averaging argument from the last few slides shows that:

Lemma

Suppose that there is a regular k-uniform hypergraph on n vertices with the MMS property.

Then the Manickam-Miklós-Singhi Conjecture holds for that n and k.
Theorem (P.)

For \(n \geq 10^{46} k \), there are \(k(k - 1)^2 \)-regular \(k \)-uniform hypergraphs \(\mathcal{H}_{n,k} \) on \(n \) vertices with the MMS property.
MMS property

Theorem (P.)

For $n \geq 10^{46} k$, there are $k(k - 1)^2$-regular k-uniform hypergraphs $\mathcal{H}_{n,k}$ on n vertices with the MMS property.

Vertices of $\mathcal{H}_{n,k}$ are \mathbb{Z}_n.

Edges of $\mathcal{H}_{n,k}$ are double intervals where the distance between the intervals is less than k.

i.e. sets of the form $[x, x + i - 1] \cup [x + i + j, x + k + j - 1]$ for $i, j < k$.
Sketch of proof

Suppose that $\mathcal{H}_{n,k}$ contains less than $d(\mathcal{H}_{n,k})$ nonnegative edges. We prove two claims:

Claim 1 Let I be an interval in $V(\mathcal{H}_{n,k})$ of length $\leq n - 2k$. Then there is a negative interval J of order at most $|I| + 2k$ containing I.

Claim 2 Let I be an interval in $V(\mathcal{H}_{n,k})$ with $|I| \geq 20k$ containing no nonnegative edges. Then I is negative.

If $n \geq 30k^4$, by the Pigeonhole Principle there is an interval I of length $30k$ containing no nonnegative edges.
Sketch of proof

Suppose that $\mathcal{H}_{n,k}$ contains less than $d(\mathcal{H}_{n,k})$ nonnegative edges. We prove two claims:

Claim 1

Let I be an interval in $V(\mathcal{H}_{n,k})$ of length $\leq n - 2k$. Then there is a negative interval J of order at most $|I| + 2k$ containing I.

Claim 2

Let I be an interval in $V(\mathcal{H}_{n,k})$ with $|I| \geq 20k$ containing no nonnegative edges. Then I is negative.
Sketch of proof

Suppose that $\mathcal{H}_{n,k}$ contains less than $d(\mathcal{H}_{n,k})$ nonnegative edges. We prove two claims:

Claim 1

Let I be an interval in $V(\mathcal{H}_{n,k})$ of length $\leq n - 2k$. Then there is a negative interval J of order at most $|I| + 2k$ containing I.

Claim 2

Let I be an interval in $V(\mathcal{H}_{n,k})$ with $|I| \geq 20k$ containing no nonnegative edges. Then I is negative.

If $n \geq 30k^4$, by the Pigeonhole Principle there is an interval I of length $30k$ containing no nonnegative edges.
Open problems

Question

What hypergraphs have the MMS property?
Open problems

Question

What hypergraphs have the MMS property?

Theorem (Huang and Sudakov)

For $n \geq 10k^3$, every hypergraph with all codegrees equal has the MMS property.
Open problems

Question
What hypergraphs have the MMS property?

Theorem (Huang and Sudakov)
For \(n \geq 10k^3 \), every hypergraph with all codegrees equal has the MMS property.

Question
What is the complexity of deciding whether a hypergraph has the MMS property?
Open problems

Question

What hypergraphs have the MMS property?

Theorem (Huang and Sudakov)

For \(n \geq 10k^3 \), every hypergraph with all codegrees equal has the MMS property.

Question

What is the complexity of deciding whether a hypergraph has the MMS property?

Problem

Characterize all (2-uniform) graphs with the MMS property.