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Ramsey Theory

The Ramsey Number R(G, H) is the smallest n for which any
2-edge-colouring of K|, contains either a red G or a blue H.

Theorem (Ramsey, 1930)

R(K,, K»,) is finite for every n.

The following bounds hold
V2" < R(K,, K,) < 47,
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Ramsey Theory

The Ramsey Number R(G, H) is the smallest n for which any
2-edge-colouring of K|, contains either a red G or a blue H.

Theorem (Ramsey, 1930)

R(K,, K»,) is finite for every n.

The following bounds hold
V2" < R(Ka, Ky) < 4",

Theorem (Erdés, 1947)

R(P,, Kyn) = (n—1)(m—1)+1.
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Ramsey Theory

The Ramsey Number R(G, H) is the smallest n for which any
2-edge-colouring of K|, contains either a red G or a blue H.

Theorem (Ramsey, 1930)
R(K,, K»,) is finite for every n. }

The following bounds hold
V2" < R(Ky, Ky) < 4",

Theorem (Erdés, 1947)
R(P,, Kyn) = (n—1)(m—1)+1. J

The following lower bound holds for all G and H (Chvatal; Harary
and Burr).

R(G, H) = (x(H) = 1)(I6] = 1) + o(H)
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Ramsey Theory
Theorem (Erdds, 1947)

R(P,,K,) = (n—1)(m—1)+1.

Proof.
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Ramsey Theory
Theorem (Erdés, 1947)

R(P,, Kn) = (n—1)(m—1)+ 1.

Proof.

Theorem (Pdsa, 1963)

The vertices of every graph G can be covered by o G) disjoint cycles.
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Ramsey Theory
Theorem (Erdés, 1947)

R(P,, Kn) = (n—1)(m—1)+ 1.

Proof.

Theorem (Pdsa, 1963)

The vertices of every graph G can be covered by o G) disjoint cycles.

Theorem (Gallai-Milgram, 1960)

The vertices of every directed graph D can be covered by a(D)
disjoint directed paths.

y
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Ramsey Theory

Theorem (Gerencsér and Gyarfas, 1966)
Forn>m,

2

R(Pa Pm) =n+ | 3| -1

Alexey Pokrovskiy (FU Berlin)
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Ramsey Theory

Theorem (Gerencsér and Gyarfas, 1966)

Forn > m,

R(Pa Pm)=n+ |3 ] -1

Theorem (Gerencsér and Gyarfés, 1966)

Every 2-edge-coloured complete graph can be covered by 2 disjoint
monochromatic paths with different colours.
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168 L. GERENCSER AND A. GYARFAS

ON RAMSEY-TYPE PROBLEMS 169

THEOREM 1. For k = [ we have
m B0k D) = k4 ’L‘]

Considering the other special case of this type of problems, let /() denote
the greatest integer with the property, that colouring the edges of a complete
n-tuple g with r colours arbitrarily, there exists always a one-coloured connected
subgraph with at least f,(n) vertices.

Itis easy to see the following remark of P. Ern0s: if a graph is not connected
then its complement is connected, i.e. [y(n) = n. We shall prove

TueoREM 2.
: ntl
® o =[]
Now we turn to the proof of Theorem 1. First we prove g(k, I)=k+ IHTI]

by induction on k. For k=1 the Theorem evidently holds and let us suppose
that for all k-s less than this the statement is true, Let us consider a graph G
with &+ [0 ] vertices. 1£ 1<, then for any subgraph of G with k— Hzl

points holds that either itself contains a path of length k— 1, or its complement
a path of length I. For I=k we consider a subgraph with k—1+ ?‘ points.

This or its complement contains a path of length k— 1. Thus In every easecan

be supposed, that the length of the longest pathof Gisk— 1. g3+ 00y U

be the consecutive vertices of such a path and U = {Uy, . u .} We denote

the remaining vertices by V,, ..., v{,;,] and the set of them by V =
T

v 3
el

It clearly holds that

(i) for all V, € V either V.U € Gor VU, € G

(if) for all V, € V V,U, € G and V.U, € G

(i) for Viy, Vo, Vae Vand U, Uy € U
at least one of the latést points is connected in G with at least two of Vi, Vig, Vg

Consider a maximal path of G not containing Uy, Uy with the property
that any edge of it connects a point of U with a point of V, and its endpoints-
are in V; let us denote the endpoints by A and B, and the path by S. If S con
tains all points of V, then by adding the edges U, A, BU, we have a path of

length 2 % =1 in G. So we may suppose that the set of points V not con-

tained by S is not empty. Let this set be called W. Consider a maximal path
g of G not containing Uy, Uy and having no common points with S, such that
an)’ edge of it connects a point of U with a point of W and the endpoints of it,

(FU Berl
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called by C and D, are in W. We show that all points of V are contained either
in S oring. Suppose that X ¢ V but X ¢ 8, X ¢ . It is clear, that the number
of vertices of S and q in U is at most [';' ] g, "%3 a ‘# since
1 = k. So there exist two points U, Uy € {Us, ..., Uy} Which do not belong
cither to S or to ¢. Applying (iii) for A, C, X € V and Uy, U, € U we have
a contradiction to the maximal properties of S and g.

So the sum of the length of S and g is 2 [’* L ]_4. We add them the edges

U,A, BU,, U,C, DU, and so we have a circuit of length 2 '12_' in G. For

odd I this contains a desired path with length [. For even [ an easy reasoning
shows that there are Uy, U,4y € U which do not belong to this circuit. Hence
one of them is connected with a vertex of the circuit (see (i)) and so we have
again a path with length I in G. That completes the proof.

Now we give examples for graphs G with k + ':2—]] — 1 points that have

no path of length &, and for them at the same time G have no path of length i.
a) Let G consist of the disjoint graphs Hy, H, with k and[¥]~ 1 points

respectively, where the graph H, is complete.

b) For even [ we can leave one of the edges of H,. These graphs possess
obviously the desired property.t

Now we turn to the proof of Theorem 2. We consider a classification of the
edges of a complete graph G into three classes, i.e. let the edges of G be coloured
with red, yellow and blue colours. So we get the graphs G, G, and Gy formed
by the red. vellow and blue edges respectively. We say that a subgraph is for
example red-conneeted if it i a connected subgraph of G,. Let us take a maximal
red-connected subgraph R. It may be supposed that R is not empty and =(R) =
< a(G) = n. Let B bea point of G such that B ¢ R. Since R is a maximal con-
nected subgraph of i, BR, is not red for R, ¢ R. So one may suppose that

1
there are at least — =,R) points of R which are connected with B by blue edges.

Let V denote the set of these points of R and W be the maximal blue-connected
subgraph that contains B. If V' is a point such that ¥ ¢ R and ¥ ¢ W then
YV, is yellow for V; ¢ V. Let Q denote the maximal yellow-connected sub-
graph that contains Y. If there is no such Y, Q denotes the empty set. R, W, Q
contain together all points of G. Namely any points S ¢ R is connected with a

1 The weaker result glk, [) = k+1 can be casily proved. Let - consider any vertex
P and a pair of paths of G and @ without common vertices except P. It can be proved that a
peir of paths with maximal sum of engths contaias all ponts. hasimaaity with respect 1031
F'and 2 pairs.) From that the statement fallows

ning ¢
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168 L. GERENCSER AND A. GYARFAS

ON RAMSEY-TYPE PROBLEMS 169

THEOREM 1. For k = [ we have
m B0k D) = k4 ’L‘]

Considering the other special case of this type of problems, let /() denote
the greatest integer with the property, that colouring the edges of a complete
n-tuple g with r colours arbitrarily, there exists always a one-coloured connected
subgraph with at least f,(n) vertices.

Itis easy to see the following remark of P. Ern0s: if a graph is not connected
then its complement is connected, i.e. [y(n) = n. We shall prove
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: ntl
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Now we turn to the proof of Theorem 1. First we prove g(k, I)=k+ IHTI]

by induction on k. For k=1 the Theorem evidently holds and let us suppose
that for all k-s less than this the statement is true, Let us consider a graph G
with &+ [0 ] vertices. 1£ 1<, then for any subgraph of G with k— Hzl

points holds that either itself contains a path of length k— 1, or its complement
a path of length I. For I=k we consider a subgraph with k—1+ ?‘ points.

This or its complement contains a path of length k— 1. Thus In every easecan

be supposed, that the length of the longest pathof Gisk— 1. g3+ 00y U

be the consecutive vertices of such a path and U = {Uy, . u .} We denote

the remaining vertices by V,, ..., v{,;,] and the set of them by V =
T

v 3
el

It clearly holds that

(i) for all V, € V either V.U € Gor VU, € G

(if) for all V, € V V,U, € G and V.U, € G

(i) for Viy, Vo, Vae Vand U, Uy € U
at least one of the latést points is connected in G with at least two of Vi, Vig, Vg

Consider a maximal path of G not containing Uy, Uy with the property
that any edge of it connects a point of U with a point of V, and its endpoints-
are in V; let us denote the endpoints by A and B, and the path by S. If S con
tains all points of V, then by adding the edges U, A, BU, we have a path of

length 2 % =1 in G. So we may suppose that the set of points V not con-

tained by S is not empty. Let this set be called W. Consider a maximal path
g of G not containing Uy, Uy and having no common points with S, such that
an)’ edge of it connects a point of U with a point of W and the endpoints of it,
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called by C and D, are in W. We show that all points of V are contained either
in S oring. Suppose that X ¢ V but X ¢ 8, X ¢ . It is clear, that the number
of vertices of S and q in U is at most [';' ] g, "%3 a ‘# since
1 = k. So there exist two points U, Uy € {Us, ..., Uy} Which do not belong
cither to S or to ¢. Applying (iii) for A, C, X € V and Uy, U, € U we have
a contradiction to the maximal properties of S and g.

So the sum of the length of S and g is 2 [’* L ]_4. We add them the edges

U,A, BU,, U,C, DU, and so we have a circuit of length 2 '12_' in G. For

odd I this contains a desired path with length [. For even [ an easy reasoning
shows that there are Uy, U,4y € U which do not belong to this circuit. Hence
one of them is connected with a vertex of the circuit (see (i)) and so we have
again a path with length I in G. That completes the proof.

Now we give examples for graphs G with k + ':2—]] — 1 points that have

no path of length &, and for them at the same time G have no path of length i.
) ) i ;

4) Let G consist of the disjoint graphs Hy, Hy with k and[HT]~ 1 points
respectively, where the graph Hy is complete.

b) For even [ we can leave one of the edges of H,. These graphs possess
obviously the desired property.t

‘Now we turn to the proof of Theorem 2. We consider a classification of the
edges of a complete graph G into three classes, i.e. let the edges of G be coloured
with red, yellow and biue colours. So we get the graphs G,, G, and G, formed
by the red. vellow and blue edges respectively. We say that a subgraph is for
example red-conneeted if it < a connected subgraph of G, Let us take a maximal
red-connected subgraph R. It may be supposed that R is not empty and =(R) =
< 2(G) = . Let B bea roint of G such that B ¢ R. Since  is a maximal con-
nected subgraph of £ . BR, is not red for R, ¢ R. So one may suppose that

1
there are at least — =,R) points of R which are connected with B by blue edges.

Let V denote the set of these points of R and W be the maximal blue-connected
subgraph that contains B. If V' is a point such that ¥ ¢ R and ¥ ¢ W then
YV, is yellow for V; ¢ V. Let Q denote the maximal yellow-connected sub-
graph that contains Y. If there is no such Y, Q denotes the empty set. R, W, Q
contain together all points of G. Namely any points S ¢ R is connected with a
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called by C and D, are

THEOREM 1. For k = I we have n W \\e show that all pmm\ of V are contained either
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Now we turn to the proof of Theorem 1. First we prove gk, [)=k-+ again a path with length  in G. That completes the proof.
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(i) for all V, € V either V,U, ¢ Gor VU4, € G
(ii) for ail V VU, € Gand V.U, € G there are at least

(iii) for Vi, Vip, Va € Vand U, L L Let V denote the set of these points of R and W be the maximal blue:
at least one of the latest points is connected in G with at least two of Vi, Vg, Vi subgraph that contains B. If ¥ is a point such that ¥V § R and ¥
s yellow lor V¢ V. Let @ denote the maxinal yellow-connected sub-

Consider a maximal path of G not containing U,, U, with the property
that any edge of it connects a point of U with a point of V, and its endpoints-
are in V'; let us denote the endpoints by A and B, and the path by S. If S con
tains all points of V, then by adding the edges U, A, BU, we have a path of

14
length 2| —

t contains V. If there is no such ¥, Q denotes the empty set. R, W, Q
n together all points of G. Namely (m points S ¢ R is connected with a

1in G. So we may suppose that the set of points V not con-

ulmd by § is |m'  empty. Let this set be called W. Consider a maximal path
of G not containing U,, Uy and having no common points with §, such that

Loy of it connests 4 point of U with a point of W and the endpoints of it,
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Ramsey Theory

! The weaker result g(k, ) = k+! can be easily proved'. Let us consider any vertex
P and a pair of paths of G and G without common vertices except P. It can be proved that a
pair of paths with maximal sum of lengths contains all points. (Maximality with respect to all
P and all pairs.) From that the statement follows.

1 The weaker result gk, I) = k+1 can be easily proved. Let us consider any vertex
P and a pair of paths of G and G without common vertices except P. It can be proved tha
i of pathsawith maiga su of lengths contains all poins. (Maximalicy with respect to.ll
P and all pairs.) From that the statement follows
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Ramsey Theory

Theorem (Gyarfas and Lehel; Faudree and Schelp, 1973)
RKM(P,,, Pn)~n+m

|
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Ramsey Theory
Theorem (Gyarfas and Lehel; Faudree and Schelp, 1973)

Rk, ,(Pn, Pm) = n+m

Theorem (Gyarfés and Lehel, 1973)

Let G be a 2-edge-coloured balanced complete bipartite graph. Then
one of the following holds.

@ G looks like this: X Y

@ Then there are two disjoint monochromatic paths covering all,
except possibly one vertex in G.

v
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Partitioning coloured graphs

Theorem (Gerencsér and Gyarfas, 1966)

Every 2-edge-coloured complete graph can be covered by 2 disjoint

monochromatic paths with different colours.

Conjecture (Gyarfas, 1989)

Every r-edge-coloured complete graph can be covered by r disjoint

monochromatic paths.

This theorem and conjecture gave rise to a number of results.
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Partitioning coloured graphs
Conjecture (Gyarfas, 1989)

Every r-edge-coloured complete graph can be covered by r disjoint
monochromatic paths.

This conjecture led to...
@ Every r-edge-coloured infinite complete graph can be covered by
r infinite monochromatic paths. [Rado, 1987]
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Partitioning coloured graphs
Conjecture (Gyérfas, 1989)

Every r-edge-coloured complete graph can be covered by r disjoint
monochromatic paths.

This conjecture led to...
o

@ Every r-edge-coloured K, can be covered by O(r?log r) disjoint
monochromatic cycles. [Erdés, Gyérfas and Pyber, 1991]
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Partitioning coloured graphs
Conjecture (Gyérfas, 1989)

Every r-edge-coloured complete graph can be covered by r disjoint
monochromatic paths.

This conjecture led to...
o

@ Every r-edge-coloured K, can be covered by O(rlogr) disjoint
monochromatic cycles. [Gyarfas, Ruszinkd, Sarkozy and
Szemerédi, 2006]
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Partitioning coloured graphs
Conjecture (Gyérfas, 1989)

Every r-edge-coloured complete graph can be covered by r disjoint
monochromatic paths.

This conjecture led to...
o

@ Every 2-edge-coloured K, can be covered 2 disjoint
monochromatic cycles. [Luczak, Rédl and Szemerédi, 1998;
Allen, 2008; Bessy and Thomassé, 2010]
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Partitioning coloured graphs
Conjecture (Gyarfas, 89)

Every r-edge-coloured complete graph can be covered by r disjoint
monochromatic paths.

This conjecture led to...
@ Every 3-edge-coloured K, has 3 monochromatic cycles covering
n— o(n) vertices. [Gyarfas, Ruszinkd, Sarkézy and Szemerédi, 2011]
°
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Partitioning coloured graphs
Conjecture (Gyarfas, 89)

Every r-edge-coloured complete graph can be covered by r disjoint
monochromatic paths.

This conjecture led to...
o

@ Not every 3-edge-coloured K|, can be covered by 3 disjoint

monochromatic cycles. [P., 2013]
"]
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Partitioning coloured graphs
Conjecture (Gyarfas, 89)

Every r-edge-coloured complete graph can be covered by r disjoint
monochromatic paths.

This conjecture led to...
o

o
o Every 3-edge-coloured K|, can be covered by 3 disjoint

monochromatic paths. [P., 2013]
(]
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Partitioning coloured graphs
Conjecture (Gyarfas, 89)

Every r-edge-coloured complete graph can be covered by r disjoint
monochromatic paths.

This conjecture led to...
o

@ Suppose that we have a sequence G = { Gy, G, G, ... } of
graphs with maximum degree < A. Every 2-edge-coloured
complete graph can be covered by at most 2¢A /o4
monochromatic copies of graphs from G. [Grinshpun and
Sarkozy, 2013
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Results

Theorem (P., 2014+)

Suppose that the edges of K,, are 2-coloured. Then K, can be

covered by k disjoint red paths and a disjoint blue balanced complete
(k + 1)-partite graph.
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Results

Theorem (P., 2014+)

Suppose that the edges of K,, are 2-coloured. Then K,, can be
covered by k disjoint red paths and a disjoint blue balanced complete
(k + 1)-partite graph.

v

Theorem (P., 2014+)

Suppose that the edges of K, are 2-coloured such that the red
subgraph is connected. Then K, can be covered by k disjoint red
paths and a disjoint blue balanced complete (k + 2)-partite graph.
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Applications

Theorem (P., 2014+)

Suppose that the edges of K,, are 2-coloured. Then K, can be
covered by k disjoint red paths and a disjoint blue balanced complete
(k + 1)-partite graph.

@ Generalises original Gerencsér-Gyarfas path partitioning theorem.

Alexey Pokrovskiy (FU Berlin) Calculating Ramsey numbers by partitioning ¢ May 22, 2014 14 /17



Applications

Theorem (P., 2014+)

Suppose that the edges of K,, are 2-coloured. Then K, can be
covered by k disjoint red paths and a disjoint blue balanced complete
(k + 1)-partite graph.

@ Generalises original Gerencsér-Gyarfas path partitioning theorem.
@ Can be used to prove the r = 3 case of Gyérfas Conjecture.
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Applications

Theorem (P., 2014+)

Suppose that the edges of K,, are 2-coloured. Then K,, can be
covered by k disjoint red paths and a disjoint blue balanced complete
(k + 1)-partite graph.

o R(Pp,KN=(t—1(n—1)+t(i—1)+1
for i =1 (mod n—1).
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Applications

Theorem (P., 2014+)

Suppose that the edges of K,, are 2-coloured. Then K,, can be

covered by k disjoint red paths and a disjoint blue balanced complete
(k + 1)-partite graph.

e R(P,KH=(t—-1)(n-1)+t(i—-1)+1
for i=1 (mod n— 1). This generalises:
» R(Pp,Km) = (n—1)(m—1)+ 1 [Erd8s].
» R(Pn,Kii)=n+i—1form=1 (mod n— 1) [Haggkvist].
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Applications

Theorem (P., 2014+)

Suppose that the edges of K,, are 2-coloured. Then K,, can be

covered by k disjoint red paths and a disjoint blue balanced complete
(k + 1)-partite graph.

e R(P,KH=(t—-1)(n-1)+t(i—-1)+1
for i=1 (mod n— 1). This generalises:
» R(Pp,Km) = (n—1)(m—1)+ 1 [Erd8s].
» R(Pn,Kii)=n+i—1form=1 (mod n— 1) [Haggkvist].
e R(P,,PX)=(n—1)k + [k+1J (Conjectured by Allen, Brightwell
and Skokan).
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Applications

Theorem (P., 2014+)

Suppose that the edges of K,, are 2-coloured. Then K,, can be

covered by k disjoint red paths and a disjoint blue balanced complete
(k + 1)-partite graph.

e R(P,KH=(t—-1)(n-1)+t(i—-1)+1
for i=1 (mod n— 1). This generalises:
» R(Pp,Km) = (n—1)(m—1)+ 1 [Erd8s].
» R(Pn,Kii)=n+i—1form=1 (mod n— 1) [Haggkvist].
e R(P,,PX)=(n—1)k + [k+1J (Conjectured by Allen, Brightwell
and Skokan).

e Might be useful for finding R(P,, H) for other graphs H..?
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Proof

Theorem

Every 2-edge-coloured complete graph can be covered by a red path
and a disjoint blue balanced complete bipartite graph.

Proof.

]

y
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Open problems

Conjecture

Every 2-edge-coloured complete tripartite graph can be covered by
two disjoint monochromatic paths.

Conjecture (Gyarfas and Sarkozy)

Every complete r-uniform hypergraph H can be covered by a(H)
disjoint loose cycles.

Problem

Every r-edge-coloured complete graph can be covered by 1000r
monochromatic paths.
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Open problems

Problem

Prove natural statements of the form “Every 2-edge-coloured
complete graph can be covered by a red graph G and a disjoint blue
graph H with G and H having particular structures”.

Known results of this type:
@ G and H paths [Gerencsér and Gyarfas].

@ G and H cycles [Luczak, R&dl, and Szemerédi; Allen; Bessy and
Thomassé|.

e G a matching, H a complete graph [folklore].

@ G a forest of k paths, H a balanced complete (k + 1)-partite
graph. [P]

o G acycle, H a graph with A(H) > 1(|H| —1). [P]
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